Chemical Hydrides

Ken Stroh, facilitator Cathy Gregoire Padro, scribe

Targets

- Is weight really just as important as volume and performance (from a consumer perspective)?
- How do we compare the life cycle aspects of these systems to re-fillable systems?
- Current energy efficiency definition may be inappropriate for these systems

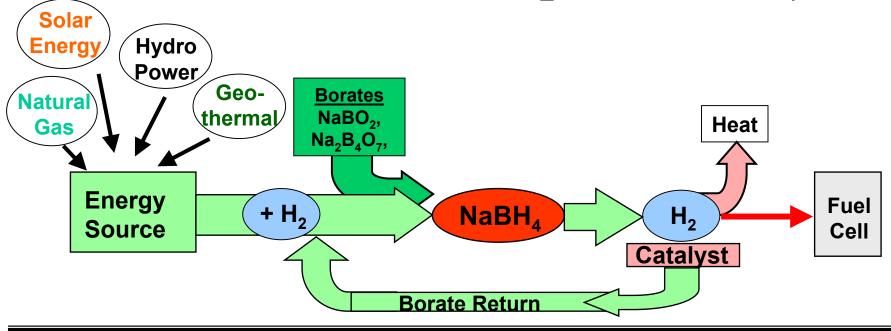
Challenges

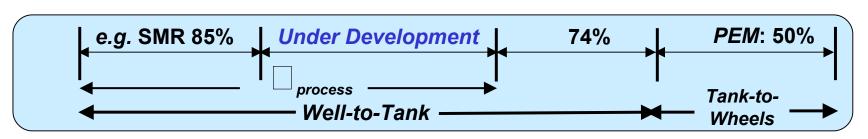
- Identification of chemistry
 - Reactions (regeneration chemistry), including thermodynamic limits, need to be identified and ranked (screened)
 - For chemical hydrides already under consideration
 - For new sets?
 - "Well-to-wheels-to-well" analysis
 - Process and reactor engineering
- Development of process designs and PFDs
- System integration issues
- Technology validation and demonstration

Advantages

- Refueling with a liquid (used to this)
- Portable and distributed generation applications could be early markets that help establish the infrastructure

Refining/Defining Metrics


Sustainability


- Resource availability do we need to have sufficient materials to support all transportation ?
- Emissions is there a potential for low/no life cycle emissions ?

Energy Efficiency

– Overall process efficiency for regeneration includes hydrogen production for these materials – how do we compare this to other storage systems that do not include the hydrogen production efficiency?

Process Development Approach To Deliver Economic H₂ via NaBH₄

Well-to-Wheels Efficiency Targeted At 15 +%

Research Plan

- Screen chemical complexes
 - Hydrogen storage density potential (without system considerations chemistry only)
 - "Free" water from fuel cell
 - Water penalty
 - Thermodynamic (theoretical) energy requirements including regeneration
 - Availability of basic components
 - Safety considerations
- Improved/new process chemistry
 - Identify routes and energy requirements
 - Develop processes
 - Catalysts
 - Operating conditions (temperature, pressure)

Research Plan, continued

- Develop process designs for "best" complexes
 - Reactor engineering, including safety issues
 - Energy-efficient new processes
 - Overall emissions for entire cycle
 - Cost of delivered fuel
- Well-to-wheels-to-well analysis of top complexes
 - Primary energy use
 - Emissions
 - Resource depletion